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Abstract. Impedance spectroscopy gains much attention as a non-destructive analysis technique in many areas
of materials science and device manufacturing. While it is relatively easy to collect data, the correct analysis or
the data interpretation is not a straightforward task. In this paper, a novel analysis technique that provides a simple
mean to identify the best system function is shown.

A new taxonomy of all the possible circuit models that are based on RC lumped elements is given. The taxonomy
divides the various circuit models into groups of increasing complexity. Its order and family, where for RC elements
there are four different families, identify each group. A “black box”, rather than a pre-assumed circuit model,
represents the sample under test (SUT). The simplest group (order and family) that describes the SUT accurately
within the experimental limitations can be found in a single experiment. In some cases, the best circuit model within
the group can also be found by investigating the behavior of the SUT under various changes (i.e., temperature,
radiation, other environmental conditions, sample construction, etc.).

The technique is demonstrated on various circuits with lumped capacitors and resistors. This is done both on
actual systems and on synthetic data with artificial noise. A comparison of this method with a standard Cole-Cole
identification demonstrates the power of the new approach.
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Introduction

The common practice of using impedance spectroscopy
is to assume a circuit model first, and then to analyze
the obtained experimental data according to the pre-
assumption [1]. This pre-assumption takes the form of
a function, say Z (s) (where s ≡ iω), and the values
of its parameters are found by fitting—typically using
complex nonlinear least squares [2, 3]. Further, in some
cases the validity of the experimental results is checked
using the Kramers-Kronig transforms [4, 5].

Can we identify the best circuit model, as part of the
data analysis (“black box” attitude)? In answering this
question, one has to address two problems. The first
one is how to identify the best function for a given set
of data (including errors). The second one is how to
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find the best equivalent circuit to describe the SUT for
a given system function.

In order to find the best system function, we have
developed a novel taxonomy of all the possible systems
in the RC lumped elements case. Each system function
represents a group of circuit models. This taxonomy, as
well as the method to identify the best system function,
is described below in the methods section. The second
problem is much harder to deal with. In the results sec-
tion, we show one example where this problem could
be addressed. However, in real systems this is gener-
ally an unsolved problem, and requires knowledge of
the physical system and its response to its environment.

Finally, measurements done on a known arrange-
ment of capacitors and resistors are analyzed using the
new approach and compared to the common practice
in the field. While one may most probably identify this
given real system, in the available frequency range, as
2nd order 2nd family using fitting of the experimental
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data to a Cole-Cole plot, the new approach identifies
it correctly as 4th order 1st family. This final example
demonstrates the power of the new approach.

Methods

Taxonomy of the System Functions in the RC Case

All the system functions describing circuit models that
are based on lumped resistors and capacitors have the
general form:

Z (s) =
∑

i ai si

∑
i bi si

; s ≡ √−1 · ω (1)

Moreover, there are only four different basic forms of
this formula for the case of RC circuits, which we call
families. Those families are:




1. Z (s) = 1 + ∑n−1
i=1 ai si

∑n
i=1 bi si

2. Z (s) = 1 + ∑n−1
i=1 ai si

b0 + ∑n
i=1 bi si

3. Z (s) = 1 + ∑n
i=1 ai si

∑n
i=1 bi si

4. Z (s) = 1 + ∑n
i=1 ai si

b0 + ∑n
i=1 bi si

(2)

The order of the system function is the rank of the de-
nominator polynomial, and is the number of capacitors
in the corresponding RC model circuits. Some special
low order cases are (order, family): (0, 4) a resistor—
Z (s) = 1/b0; (1, 1) a capacitor—Z (s) = 1/b1s; (1, 2)
parallel R and C—Z (s) = 1

b0+b1s ; (1, 3) R and C in
series—Z (s) = 1+a1s

b1s ; and (1, 4) a resistor in series
with parallel R and C—Z (s) = 1+a1s

b0+b1s . The last system
function (1, 4), is a system function of two different
circuit models that produce the same impedance at all
frequencies. This is the first group with more than one
member. The number of circuit models per group grows
rapidly with the number of independent parameters in
the system function. The number of independent pa-
rameters in the system function equals the number of
elements (R and C) in the model circuit, and is 2n − 1
for the first family, 2n for the second and third family
and 2n+1 for the fourth family. Thus, the fourth family
of order n − 1 is as complex as the first family in order

n while the second family is as complex as the third
family in the same order.

How to Identify the Best Order and Family

The “best” system function would be the one that can
reproduce the experimental data within the error level
of the measurement system with the least number of
components. For each system function, after fitting and
finding the relevant parameters [6], one can find the
discrepancy by calculating the variance. The weight-
ing function should not be in general the best one for
fitting the system parameters. It should rather be a “less
forgiving” weighting function, to get a clear kinks in
the plot described below. For most cases that we have
investigated, unit weighting is the most convenient one
for this purpose. The logarithm of the discrepancy is
then plotted for each family against the order. This re-
sults typically in a straight line with a sharp kink in
a certain order and variance that corresponds to the
noise level of the experiment. These kinks can show
up in different orders for different families. The best
order is chosen as the lowest order with a kink, simply
because increasing the order (and complexity) does not
reduce the discrepancy. If more than one family have
their kinks at the same order, one chooses the simplest,
i.e. lowest number, family. Although there are pairs of
families with the same complexity, there is no ambigu-
ity in practice, as shown below for 3rd order systems
(see Fig. 3).

Results

Identification of a “Black Box” Containing Four
Lumped Elements

To check the method, we first built a real system con-
taining two capacitors and two resistors, as described
in Fig. 1. This system is, according to our taxonomy,
2nd family 2nd order. The parameters of the lumped el-
ements were: R1 = 1 k� or 3 M� R2 = 100 k� C1 =
4 nF or 10 nF, and C2 = 1 nF. The measurements were
done using Agilent HP4294A impedance analyzer in
the frequency range 40 Hz–10 MHz. The results of
the identification procedure are shown in Fig. 2. The
choice of (order, family) = (2, 2) is clear. For this sys-
tem function, there are four different possible circuit
models. Choosing the correct model yielded the cor-
rect parameters. Changing one component (R1 or C1)



Analysis of Impedance Spectroscopy Data 91

R1

R2

C1

C2

Fig. 1. The real circuit with lumped elements that was used to check
the method.
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Fig. 2. Identification of the lumped element system of Fig. 1.

yielded changes in only one parameter in the correct
model while in the other models it yielded changes in
more than one parameter. This demonstrates that if one
can have some additional information (in this case—
the fact that only one component has been changed
from one experiment to another) then the best model,
and not only the best system function, can be chosen.

Identification of Synthetic Data of Higher Order
Systems with White Noise

To further check the method, we have produced syn-
thetic data of the four families in order 3. White noise
within the limits of ±0.5% was added both to the real
and imaginary parts of the data. The identification is
shown in Fig. 3(a)–(d), and the Cole-Cole plots are
shown in Fig. 3(e) for comparison. The correct order
and family can be clearly identified using our method
(3(a)–(d)) while it is not at all clear what the systems
are, using the Cole-Cole plots (3(e)). The advantage of
the present identification method is even more striking
if one is using limited frequency width.

As we have pointed out earlier, there is no ambiguity
between pairs of families with the same complexity.
In Fig. 3(a) and (d), families 2 and 3 have the same
complexity and have kinks in the same order. However,
the chosen families (1 and 4 respectively) have a kink
in an order corresponding to a lower complexity. The
same phenomenon is seen in Fig. 3(b) and (c), where
families 1 and 4 assume the same complexity. However,
the chosen families (2 and 3 respectively) have a kink
in an order corresponding to a lower complexity.

Identification of a More Complex Lumped
Elements System

A 4th order 1st family system was built using the fol-
lowing resistors and capacitors: C0 = 1.12 µF, C1 =
50.2 nF, R1 = 38.8 k�, C2 = 4.00 nF, R2 = 67.8 k�,
C3 = 10.0 nF, R3 = 56.2 k�. This system was mea-
sured by Agilent 4294A in the frequency range of
40 Hz–100 kHz. A fitting of the results to 2nd order 2nd
family is presented in Fig. 4(a) (both the real and imagi-
nary parts vs. frequency) and (b) (Cole-Cole plot). Note
that the lines in those figures are doubled, as the experi-
mental and fitting lines are very close. One could be eas-
ily convinced that this is a good approximation. How-
ever, looking at Fig. 5, one can see immediately that the
new approach identifies it correctly as 4th order 1st fam-
ily. Using the correct system function, ZView (Scribner
Associates, Inc.) yields the following values after fit-
ting with unit weighting: C0 = 1.14 µF, C1 = 49.9 nF,
R1 = 39.0 k�, C2 = 4.01 nF, R2 = 67.6 k�, C3 =
10.0 nF, R3 = 56.2 k�.

Discussion and Summary

Partitioning of all the possible circuit models was de-
veloped, based on increased complexity. Each system
function represents a group of possible circuit mod-
els, and is defined by its order and family. The order
of the system function is the rank of the denomina-
tor polynomial, and is also the number of capacitors
in the corresponding RC model circuits. There are but
four different families of system functions describing
all the possible RC circuits.

The best system function (order and family) can
be found by a single experiment. In some cases, the
best circuit model can also be found, based on addi-
tional data and information. A disadvantage of the ap-
proach is the fact that it is restricted to simple circuits



92 Baltianski and Tsur

(a) (b)

(c) (d)

(e)

Fig. 3. Identification of order 3, synthetic data with errors: (a) family 1; (b) family 2; (c) family 3; (d) family 4; (e) Cole-Cole plots of all the
four families.
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(a)

(b)

Fig. 4. Experimental data generated using circuit belongs to 4th order
1st family system function, compared with fitting using 2nd order 2nd
family system function. (a) Real and imaginary data; (b) Cole-Cole
plot.

consisting of R and C elements. If the spectrum can be
modeled by nontrivial circuit elements like Warburg-
or Gerischer-impedances (or other transmission line
models) application of the method would lead to high
order RC model. In these cases, the usefulness of the
method is limited to finding the minimum discrepancy
that could be achieved. This, however, is an important
piece of information, as it gives the experimentalist an
un-biased criterion to evaluate any model by comparing
the discrepancy it yields with the minimal discrepancy
found for orders after the kink.

Fig. 5. Discrepancy vs. order for the experimental data of Fig. 4,
showing that the best choice of system function is 4th order 1st
family.

Recently, Schichlein et al. [7, 8] further developed
a deconvolution approach [9] based on Fourier trans-
form of the data. The authors pre-assume that a single
cell SOFC belongs to what we call here 2nd family.
The main advantage of the Schichlein et al. approach
is that it allows one to find distribution of time con-
stants within family 2, i.e., to deal with constant phase
elements for instance. We believe that our approach
can be combined with this and similar deconvolution
approaches [10, 11] as a first step. Using our approach
first, will give information on what the family is, how
many time constants (or peaks in the time constant dis-
tribution function) should be found and what is the
discrepancy that one should expect from a good model
for the present data. This, in turn, can provide a use-
ful starting point to construct a proper regularization
method for the ill-defined inverse problem of finding
the time constant distribution function [12].
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